Пассивный дом — миф или реальность

Задать вопрос
Наши специалисты ответят на любой интересующий вопрос по услуге

Крошка PIR

Рисунок 1: Многоквартирный 4-этахный пассивный дом, с подземной парковкой, в районе Банштадт.

В настоящее время люди все чаще задаются вопросом о возможности реализации строительства зданий по стандарту пассивного дома в России. Эта тема набирает популярность во многих странах Европы, да и во всем мире в целом. Меня самого очень интересовали основные принципы строительства энергоэффективных домов, и с помощью Института пассивного дома совместно с Национальным Агенством Устойчивого Развития, мне предоставилась возможность своими глазами увидеть пассивные дома на разных этапах строительства, пообщаться с архитекторами и инженерами, ознакомиться с различными вариантами инженерных систем и понять принцип их работы.

Одной из первых стран, в которой начали осваивать и внедрять технологию проектирования и строительства зданий по стандартам энергоэффективного дома, это Германия, где мне удалось побывать в рамках экскурсионного бизнес семинара «Пассивный дом — миф или реальность». В процессе ознакомительного тура были организованы поездки на объекты различного назначения в следующие города: Дармштадт, Франкфурт-на-Майне, Баден-Баден, Гейдельберг. Наша группа посетила частные дома, таунхаусы, офисные здания, многоквартирные жилые дома, детские сады, спортивный зал, бассейн и даже целый район, полностью застроенный пассивными домами.

В первый день поездки наша группа прибыла в здание, созданное по проекту «BuildTog». В его рамках был построен пятиэтажный жилой дом в стандарте пассивного дома, располагающийся в городе Дармштадт. Энергозависимая площадь здания – 3500 кв.м. на 37 квартир. Год постройки – 2013.

Крошка PIR

Рисунок 2: 5-этажный жилой дом в стандарте пассивного дома в г.Дармштадт. Северный фасад.


 Крошка PIR

Рисунок 3: 5-этажный жилой дом в стандарте пассивного дома в г.Дармштадт. Южный фасад.


Проект «BuildTog» – результат сотрудничества Европейской ассоциации застройщиков (EURHONET), французской фирмы A/NM/A под руководством архитектора Николя Мишлена, немецкой компании LUWOGE Consult, которая специализируется на консалтинге по вопросам строительства по стандарту пассивного дома. Цель данного проекта – возведение в европейских странах жилых зданий нового поколения, сочетающих энергоэффективные характеристики, экономичный подход к строительству и высококачественную архитектуру.

Крошка PIR

Рисунок 5: Проект "BuildTog" пассивного дома в г.Дармштадт. Южный фасад.


 Крошка PIR

Рисунок 4: Проект "BuildTog" пассивного дома в г.Дармштадт. Западно-южный фасад.


Жилые дома, сооружаемые в рамках проекта, отличаются не только уникальными ехническими разработками, но и единой дизайнерской концепцией: большие панорамные окна с двойным стеклопакетом, ориентированные на юг; просторные балконы, отсеченные термоизолирующими элементами, которые исключают образования «тепловых мостов»; механические системы затенения (жалюзи) против нежелательного перегрева в солнечные дни, – все это очень благоприятно и гармонично сочетается и создает индивидуальный архитектурный концерн здания.

Крошка PIR

Рисунок 6: Жилой дом в г.Дармштадт. "Отсеченная" конструкция балконных плит от плит перекрытия системой "Schock".


 Крошка PIR

Рисунок 7: Механическая система затенения в виде жалюзи.


Следующим интересным объектом стал спортивный зал в городе Франкфурт-на-Майне. Здание зала 70-х годов постройки подверглось санации в 2014 году с компонентами пассивного дома. Энергозависимая площадь – 2380 кв.м. После переустройства спортзала удельный расход тепловой энергии на отопление составляет всего 41 кВт*ч/кв.м в год, что для общественных зданий очень неплохой показатель.

В процессе реконструирования была проделана колоссальная работа по увеличению теплоизоляционного слоя стен, кровли и стыков. Были установлены массивные окна и двери. Особое внимание немецкие инженеры уделили вентиляционным установкам, которые беспрерывно и качественно должны производить циркуляцию свежего воздуха в зале.

Крошка PIR

Рисунок 8: Здание спортивного зала в г.Франкфурт-на-Майне подверженное санации.


 Крошка PIR

Рисунок 9: Энергоэффективный спортивный зал.


По отзывам людей, посетивших этот спортзал во время соревнований, они не ощущали дискомфорта от неприятных запахов или перегрева, а наоборот подчеркивали, что температура воздуха в помещении была комфортной на протяжении всей игры. Дистанционная система управления вентустановкой максимально упрощает работу с ней и исключает температурные колебания, как летом, так и зимой. Если же количество посетителей превышает допустимые пределы, то предусмотрено проветривание посредством светопрозрачных люков на крыше. Так же эти люки служат способом дымоудаления при возникновении пожара и открытие их происходит в автоматическом режиме.

Освещение в зале комбинированное — искусственное и естественное (через светопрозрачные своды на кровле). Естественного освещения вполне хватает в ясные дни, и искусственное, обычно, используется в вечернее время или в пасмурную погоду.

Крошка PIR

Рисунок 11: Эвакуационный выход. Противопожарные двери.


 Крошка PIR

Рисунок 10: Система думоудаления.


На территории спортивного комплекса было возведено здание бассейна по стандарту пассивного дома. Немецкие инженеры очень амбициозно подошли к вопросу конструирования такого непростого сооружения: были тщательно спроектированы и рассчитаны слои материалов в конструкциях стен и кровли; предельно допустимые значения толщины эффективного утеплителя устанавливались не менее 350 мм; монтировали сертифицированные двухкамерные глухие окна с тройным стеклопакетом и матовым стеклом. Поддержание температуры воды в бассейне производится с помощью геотермального теплообменника с дополнительным маломощным электрическим подогревом. Благодаря качественной вентиляционной установке, с высоким КПД теплообменника и с многочисленными диффузорами подачи и забора воздуха, обеспечивается постоянная комфортная температура для влажного помещения. Вентсистема оснащена фильтрами высокой очистки, уход и замену которых нужно производить систематически, и это не составляет большого труда. Простота замены фильтров заключается в том, что добираться к ним весьма просто, сняв только лишь крышку корпуса. К тому же установленные калориферы и шумоглушители устраняют возможность переохлаждения и возникновения шума от работы установки.

Крошка PIR

Рисунок 12: Бассейн по стандарту пассивного дома.


 Крошка PIR

Рисунок 13: Бассейн по стандарту пассивного дома в г.Франкфурт-на-Майне.


Немецкие инженеры с гордостью презентуют здание энергоэффективного бассейна с идеально продуманной инженерией. Внедряя проверенные и доступные решения в свои проекты, они способствуют развитию стандарта пассивного дома во всем мире.

Для общественных сооружений , где необходимо учитывать повышенные требования по пожарной опасности, для утепления стен и кровель используют эффективный утеплитель из пенополиизоцианурата (PIR). Изоляция из ПИР относится к самозатухающим материалам, который при высоких температурах не выделяет вредных веществ. Коэффициент теплопроводности составляет 0,022 Вт/(м*К). Кроме того PIR зарекомендовал себя на ранке как долговечный, экологичный и безопасный материал для использования в качестве теплоизоляционного слоя в зданиях.

На другой день наша группа посетила инновационный пилотный проект «Aktiv-Stadthaus» в центре города Франкфурт-на-Майне. Это многоквартирный восьмиэтажный жилой дом с положительным балансом или активный дом. Площадь составляет около 8500 кв.м.

Крошка PIR

Рисунок 15: Активный дом в г.Франкфурт-на-Майне. Южный фасад.


 Крошка PIR

Рисунок 14: Активный дом в г.Франкфурт-на-Майне. Северный фасад.


Проект представляет собой оптимальную комбинацию «пассивной» энергоэффективности по концепции пассивного дома и «активной» генерации энергии из возобновляемых ресурсов по концепции активного дома. Исходя из запрета правительством Германии использования ядерной энергии, а также решения сократить выбросы парниковых газов посредством сжигания невозобновляемых энергоносителей (угля, нефти и газа и т.д.) и к 2050 году полностью обеспечивать электроснабжение от возобновляемых источников энергии (ветра, солнца, потоков воды и геотермального тепла), была предложена установка по всей площади крыши и на южном фасаде здания – фотогальванических модулей. В связи с этим на крыше здания были установлены около 1000 солнечных батарей и еще 330 на фасаде. Они обеспечивают жильцов энергией на отопление, ГВС, бытовые нужды, лифт и даже на электро-автотранспорт. Ток, генерируемый в течение солнечного дня, накапливается в аккумуляторах, поэтому он может быть использован в ночное время суток.

Крошка PIR

Рисунок 17: Фотогальванические модули, установленные на южном фасаде здания.


 Крошка PIR

Рисунок 16: Автоматические ворота. Выезд из парковки для электромобилей.


Здание жилого дома имеет необычную форму по причине ограниченных размеров земельного участка. Строение имеет вытянутую форму с глубиной порядка 15 м. Стена южного фасада волнообразной формы, что придает архитектуре особый колорит.

Крошка PIR

Рисунок 18: Проект "Aktiv-Stadthaus". Многоквартирный жилой дом. Восточный фасад.


 Крошка PIR

Рисунок 19: Проект "Aktiv-Stadthaus". Многоквартирный жилой дом с положительным энергобалансом.


Вдобавок ко всему особенностью этого проекта является наличие в каждой квартире модуля контроля расхода энергии. Следовательно каждый жилец может спланировать свои затраты на электричество, что в значительной степени уменьшает энергопотребление, самостоятельно поддерживать комфортный микроклимат в помещениях, регулируя показатели, и даже сравнить свои показатели затрат с соседскими.

Очередным объектом стал самый первый пассивный дом в мире, построенный в 1991 году в городе Дармштадт. Для архитекторов Ботт-Риддера и Вестермайера этот проект был экспериментальным. Программа проектирования представляла собой постройку дома рядовой застройки с четырьмя квартирами (таунхаусами) по 156 кв.м. жилой площади каждая. Для первого прототипа пассивного дома был усовершенствован целый ряд строительных компонентов, предшествующие версии которых уже использовались для зданий с низким энергопотреблением.

Крошка PIR

Рисунок 21: Первый пассивный дом, г.Дармштадт. Южный фасад.


 Крошка PIR

Рисунок 20: Первый пассивный дом, г.Дармштадт. Год постройки 1991.


Впервые сочетание всех мероприятий привела к достижению поставленной задачи, т.е. почти к нулевому потреблению тепловой энергии на отопление. Эта комбинация была, в конечном счете, дорогой и неэкономичной из-за единичного изготовления компонентов. Дополнительные расходы на строительство первого пассивного дома по сравнению с обычными зданиями (построенными в соответствии с требуемыми нормами) были оплачены на 50% Гессенским министерством окружающей среды. Проверка проектных величин с показаниями высокоточных измерений в пассивном доме началась еще во время строительства. Но в дальнейшем, при внедрении технологий, соответствующих стандартам пассивного дома, стали падать цены на материалы и инженерное оборудование, и уже сегодня стоимость строительства энергоэффективных домов практически не отличается от стоимости типовых застроек.

Крошка PIR

Рисунок 22: Таунхаус в стандарте пассивного дома в поселке Кранихштайн.


 Крошка PIR

Рисунок 23: з-этажный жилой дом в стандарте пассивного дома в поселке Кранихштайн.


Отличительной особенностью в конструкции первого пассивного дома в Дармштадте – герметичность здания. При измерении этого показателя в октябре 2001 года кратность воздухообмена при разности давлений 50 Па составила n50 < 0,3 (ч-1), что в 2 раза лучше нормированного значения. Результаты термографического обследования показывают, что строительные конструкции действительно выполнены без тепловых мостов.

Горячее водоснабжение обеспечивается благодаря использованию плоских вакуумных коллекторов (5,3 кв.м. на квартиру и соответственно 1,4 кв.м. на человека), таким образом покрывается 66% общей потребности на ГВС. Догрев воды осуществляется посредством конденсационного котла на природном газе (компактный настенный вариант).

Крошка PIR

Рисунок 24: Деревянный таунхаус в стандарте пассивного дома. Год постройки 2003.


 Крошка PIR

Рисунок 25: Таунхаус в стандарте пассивного дома. Год постройки 2007.


В то время авторы проекта еще не решились на отказ от отопительного прибора. Тем не менее, этот и следующие проекты доказали, что величина максимальной отопительной нагрузки в пассивном доме даже зимой составляет менее 10 Вт/кв.м. жилой площади. Таким образом, требуемую малую величину отопительной нагрузки можно получить с помощью воздухонагревателя, установленного в воздуховод с приточным воздухом, а отдельная система отопления больше уже не понадобится.

Следующий пункт назначения также располагался в городе Франкфурт-на-Майне. Период строительства с 2015 по 2016. Это будущее здание детского сада, исполненное по принципам пассивного дома. В отличие от предыдущих объектов, на этот раз мне удалось посмотреть на конструкции и инженерное оборудование, не закрытое отделкой.

В отличие от России, в Германии особой популярностью пользуется эффективный утеплитель из пенополистирола. В данном случае используется фасадная изоляция из плит «Capatect Dalmatiner» толщиной 320 мм (160 + 160). Крепятся они анкерами к стенам из пеноблоков. В некоторых случаях, когда необходимо добиться повышенной пожаростойкости, немцы применяют плиты из каменной ваты.

Утепление фундаментов производится экструдированным пенополистиролом «Styrodur».

Крошка PIR

Рисунок 27: Будущее здание детского сада в рамках энергоэффективного дома в г.Франкфурт-на-Майне


 Крошка PIR

Рисунок 26: Комбинирование утеплителей для стен здания.


Установленные окна с тройным остеклением с двумя низкоэмиссионными покрытиями и прочными утепленными рамами. Они монтируются на небольшом расстоянии от несущей стены, чтобы попасть в зону изоляции, гарантируя этим непрерывную линию теплоизоляции по всему контуру здания. Размеры и вес окон внушительные, поэтому для закрепления оконных рам, не нарушив теплоизоляционные свойства, применяется материал из прессованного пенополиуретана «Purenit». Поскольку он хорошо поддается сверлению и выдерживает большие нагрузки. Коэффициент теплопроводности равен 0,087 Вт/(м*К). Пуренит используется в различных температурных диапазонах от -50 до +100 градусов, устойчив к химическим агрессивным веществам и гниению. Чтобы обеспечить воздухонепроницаемость в стыках и в местах дверных и оконных проемов используется мастика «Delta Liquids» или пароизоляционные ленты.

Крошка PIR

Рисунок 28: Монтаж оконной рамы в зоне теплоизоляции.


 Крошка PIR

Рисунок 29: Применение материала "Purenit" для установки больших окон.


В Германии к оснащению инженерными системами всегда подходят из соображений экономической целесообразности и самоокупаемости. Отопительное и вентиляционное оборудование работает бесшумно. Установленная система автоматизации позволяет снизить расходы на отопление, вентиляцию, кондиционирование, освещение, и другие подсистемы жизнеобеспечения и комфорта. Она обеспечивает автоматическое включение/отключение приборов и устройств, либо изменение интенсивности их работы, в зависимости от тех или иных условий (присутствия/отсутствия людей, времени суток, показателей различных датчиков и термометров и т.д.) и многое другое.

Крошка PIR

Рисунок 30: Утепление стен здания детского сада.


 Крошка PIR

Рисунок 31: Вентиляционные шахты в коридорах здания.


На последней международной конференции по пассивным домам район Банштадт в городе Гейдельберг занял первое место в своей категории, как самый большой в мире район пассивных домов. Его еще называют «районом будущего». Помимо пассивных жилых домов, здесь построены детский сад, кафе, рестораны, супермаркет, бизнес-центр, кинотеатр и магазин строительных материалов по стандартам пассивной энергоэффективности. Сегодня это один из крупнейших строительных проектов в Германии, и, вероятно, самый масштабный. В его реализацию в ближайшие 10 лет должно быть инвестировано порядка 2 млрд. евро. Территорию в 116 га заселят 5000 новых жильцов уже до 2017 года, еще 7000 человек получат здесь новую работу, в основном в высокотехнологических отраслях. Все построенные дома имеют энергопотребление на уровне 15кВт*ч на кв.м. в год, что соответствует стандартам пассивного дома. Предполагается, что всей энергетической системой района будет управлять компьютерная сеть, интерфейсы которой будут выведены в каждое помещение. Таким образом, каждый домовладелец будет видеть не только расход энергии в своём доме, но и общую картину по району в целом.

Крошка PIR

Рисунок 32: Район Банштадт в г.Гейдельберг. Центральный парк.


 Крошка PIR

Рисунок 33: Деревянный дом в стандарте пассивного дома в районе Банштадт.


Банштадт – «вокзальный город», он строится на месте старого грузового терминала в юго-западной части города. Под застройку отведены 9 га (4,5 га — учебный кампус, 3 га — социальная инфраструктура, 11 га — сеть улиц, 16,5 га — займут под коммерческие площади, 16 га — открытые пространства, а остальное отведено под общественные здания). Район застраивается таунхаусами и трех-четырехэтажными домами на 5-10 квартир. В том числе построен первый демонстрационный дом в стандарте пассивного дома.

Самое большое по площади офисное здание «SkyLabs» на территории Банштадта и самое высокое – его видно отовсюду. Девятиэтажная башня примыкает к двум пятиэтажным корпусам. Комплекс открыт в 2012 году. Его основные арендаторы – компании из биотехнологического и фармацевтического секторов. Планировка комплекса (естественно, также возведенного в соответствии с нормами пассивного домостроения) рассчитана на создание большого количества контактов между специалистами из разных компаний и отраслей, что, по замыслу архитекторов, будет способствовать обмену идеями и решениями.

Крошка PIR

Рисунок 34: Офисное здание «SkyLabs» в г.Гейдельберг.


 Крошка PIR

Рисунок 35: Энергоэффективный таунхаус в поселке Банштадт.


На конкурсе Passive House Award 2014 этот район был назван «регионом года». С учетом низкого энергопотребления зданий, Банштадт практически не генерирует углекислый газ. Большинство специалистов как в Германии, так и за ее пределами признают неоспоримые достоинства этого проекта и считают его большим достижением в части энергосбережения и экоустойчивого строительства.

Крошка PIR

Рисунок 36: Многоквартирный дом в поселке Банштадт. Северный фасад.


 Крошка PIR

Рисунок 37: Многоквартирный жилой дом в стандарте пассивного дома в поселке Банштадт. Южный фасад.


Информация, полученная от немецких специалистов, занимающихся проектированием пассивных домов, позволяет всем участникам программы внедрять и развивать строительство энергоэффективных домов в России. Это позволит вывести строительный бизнес на новый уровень и внедрить в него передовые инженерные технологии. В заключении хотелось бы отметить, что строительство пассивных домов должно исключить рост концентрации парниковых газов в атмосфере и уменьшить затраты конечного потребителя.

                                






Заказать услугу
Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.